
XBlock API Guide

Sep 07, 2018

Contents

1 Change history for XBlock 3
1.1 1.2.1 - 2018-06-25 . 3
1.2 1.2.0 - Aside filtering . 3
1.3 1.0 - Python 3 . 3
1.4 0.5 - ??? . 3
1.5 0.4 . 3
1.6 0.3 - 2014-01-09 . 4

2 Introduction to XBlocks 5
2.1 XBlock Independence and Interoperability . 5
2.2 XBlocks Compared to Web Applications . 5

3 XBlock API 7

4 Fields API 11

5 Runtime API 17

6 Fragment API 25

7 Exceptions API 27

Python Module Index 29

i

ii

XBlock API Guide

This document provides reference information on the XBlock API. You use this API to build XBlocks.

EdX also provides the EdX XBlock Tutorial, which describes XBlock concepts in depth and guides developers through
the process of creating an XBlock.

Contents 1

http://edx.readthedocs.org/projects/xblock-tutorial/en/latest/index.html

XBlock API Guide

2 Contents

CHAPTER 1

Change history for XBlock

These are notable changes in XBlock.

1.1 1.2.1 - 2018-06-25

Suppress a spurious warning when using lazily-translated text as the default value of a String field.

1.2 1.2.0 - Aside filtering

• Add capability for XBlockAsides to apply only to XBlocks that match certain conditions

1.3 1.0 - Python 3

• Introduce Python 3 compatibility to the xblock code base. This does not enable Python 2 codebases (like edx-
platform) to load xblocks written in Python 3, but it lays the groundwork for future migrations.

1.4 0.5 - ???

No notes provided.

1.5 0.4

• Separate Fragment class out into new web-fragments package

3

XBlock API Guide

• Make Scope enums (UserScope.* and BlockScope.*) into Sentinels, rather than just ints, so that they can have
more meaningful string representations.

• Rename export_xml to add_xml_to_node, to more accurately capture the semantics.

• Allowed Runtime implementations to customize loading from block_types to XBlock classes.

1.6 0.3 - 2014-01-09

• Added services available through Runtime.service, once XBlocks have announced their desires with
@XBlock.needs and @XBlock.wants.

• The “i18n” service provides a gettext.Translations object for retrieving localized strings.

• Make context an optional parameter for all views.

• Add shortcut method to make rendering an XBlock’s view with its own runtime easier.

• Change the user field of scopes to be three valued, rather than two. False becomes UserScope.NONE, True
becomes UserScope.ONE, and UserScope.ALL is new, and represents data that is computed based on input from
many users.

• Rename ModelData to FieldData.

• Rename ModelType to Field.

• Split xblock.core into a number of smaller modules:

– xblock.core: Defines XBlock.

– xblock.fields: Defines ModelType and subclasses, ModelData, and metaclasses for classes with fields.

– xblock.namespaces: Code for XBlock Namespaces only.

– xblock.exceptions: exceptions used by all parts of the XBlock project.

• Changed the interface for Runtime and ModelData so that they function as single objects that manage large
numbers of XBlocks. Any method that operates on a block now takes that block as the first argument. Blocks,
in turn, are responsible for storing the key values used by their field scopes.

• Changed the interface for model_data objects passed to XBlocks from dict-like to the being cache-like (as was
already used by KeyValueStore). This removes the need to support methods like iteration and length, which
makes it easier to write new ModelDatas. Also added an actual ModelData base class to serve as the expected
interface.

4 Chapter 1. Change history for XBlock

CHAPTER 2

Introduction to XBlocks

As a developer, you build XBlocks that course teams use to create independent course components that work seam-
lessly with other components in an online course.

For example, you can build XBlocks to represent individual problems or pieces of text or HTML content. Furthermore,
like Legos, XBlocks are composable; you can build XBlocks to represent larger structures such as lessons, sections,
and entire courses.

A primary advantage to XBlocks is that they are sharable. The code you write can be deployed in any instance of the
edX Platform or other XBlock runtime application, then used by any course team using that system.

By combining XBlocks from a wide variety of sources, from text and video, to multiple choice and numerical ques-
tions, to sophisticated collaborative and interactive learning laboratories, course teams can create rich and engaging
courseware.

2.1 XBlock Independence and Interoperability

You must design your XBlock to meet two goals.

• The XBlock must be independent of other XBlocks. Course teams must be able to use the XBlock without
depending on other XBlocks.

• The XBlock must work together with other XBlocks. Course teams must be able to combine different XBlocks
in flexible ways.

2.2 XBlocks Compared to Web Applications

XBlocks are like miniature web applications: they maintain state in a storage layer, render themselves through views,
and process user actions through handlers.

XBlocks differ from web applications in that they render only a small piece of a complete web page.

5

XBlock API Guide

Like HTML <div> tags, XBlocks can represent components as small as a paragraph of text, a video, or a multiple
choice input field, or as large as a section, a chapter, or an entire course.

6 Chapter 2. Introduction to XBlocks

CHAPTER 3

XBlock API

class xblock.core.XBlock(runtime, field_data=None, scope_ids=<object object>, *args, **kwargs)
Base class for XBlocks.

Derive from this class to create a new kind of XBlock. There are no required methods, but you will probably
need at least one view.

Don’t provide the __init__ method when deriving from this class.

Construct a new XBlock.

This class should only be instantiated by runtimes.

Parameters

• runtime (Runtime) – Use it to access the environment. It is available in XBlock code as
self.runtime.

• field_data (FieldData) – Interface used by the XBlock fields to access their data
from wherever it is persisted. Deprecated.

• scope_ids (ScopeIds) – Identifiers needed to resolve scopes.

add_children_to_node(node)
Add children to etree.Element node.

add_xml_to_node(node)
For exporting, set data on etree.Element node.

clear_child_cache()
Reset the cache of children stored on this XBlock.

force_save_fields(field_names)
Save all fields that are specified in field_names, even if they are not dirty.

get_child(usage_id)
Return the child identified by usage_id.

get_children(usage_id_filter=None)
Return instantiated XBlocks for each of this blocks children.

7

XBlock API Guide

get_parent()
Return the parent block of this block, or None if there isn’t one.

classmethod get_public_dir()
Gets the public directory for this XBlock.

classmethod get_resources_dir()
Gets the resource directory for this XBlock.

handle(handler_name, request, suffix=u”)
Handle request with this block’s runtime.

classmethod handler(func)
A decorator to indicate a function is usable as a handler.

The wrapped function must return a webob.Response object.

has_cached_parent
Return whether this block has a cached parent block.

has_support(view, functionality)
Returns whether the given view has support for the given functionality.

An XBlock view declares support for a functionality with the @XBlock.supports decorator. The decorator
stores information on the view.

Note: We implement this as an instance method to allow xBlocks to override it, if necessary.

Parameters

• view (object) – The view of the xBlock.

• functionality (str) – A functionality of the view. For example: “multi_device”.

Returns True or False

index_dictionary()
return key/value fields to feed an index within in a Python dict object values may be numeric / string or
dict default implementation is an empty dict

classmethod json_handler(func)
Wrap a handler to consume and produce JSON.

Rather than a Request object, the method will now be passed the JSON-decoded body of the request. The
request should be a POST request in order to use this method. Any data returned by the function will be
JSON-encoded and returned as the response.

The wrapped function can raise JsonHandlerError to return an error response with a non-200 status code.

This decorator will return a 405 HTTP status code if the method is not POST. This decorator will return a
400 status code if the body contains invalid JSON.

classmethod load_class(identifier, default=None, select=None)
Load a single class specified by identifier.

If identifier specifies more than a single class, and select is not None, then call select on the list of en-
try_points. Otherwise, choose the first one and log a warning.

If default is provided, return it if no entry_point matching identifier is found. Otherwise, will raise a
PluginMissingError

If select is provided, it should be a callable of the form:

8 Chapter 3. XBlock API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

XBlock API Guide

def select(identifier, all_entry_points):
...
return an_entry_point

The all_entry_points argument will be a list of all entry_points matching identifier that were found, and
select should return one of those entry_points to be loaded. select should raise PluginMissingError if no
plugin is found, or AmbiguousPluginError if too many plugins are found

classmethod load_classes(fail_silently=True)
Load all the classes for a plugin.

Produces a sequence containing the identifiers and their corresponding classes for all of the available
instances of this plugin.

fail_silently causes the code to simply log warnings if a plugin cannot import. The goal is to be able to
use part of libraries from an XBlock (and thus have it installed), even if the overall XBlock cannot be used
(e.g. depends on Django in a non-Django application). There is disagreement about whether this is a good
idea, or whether we should see failures early (e.g. on startup or first page load), and in what contexts.
Hence, the flag.

classmethod load_tagged_classes(tag, fail_silently=True)
Produce a sequence of all XBlock classes tagged with tag.

fail_silently causes the code to simply log warnings if a plugin cannot import. The goal is to be able to
use part of libraries from an XBlock (and thus have it installed), even if the overall XBlock cannot be used
(e.g. depends on Django in a non-Django application). There is diagreement about whether this is a good
idea, or whether we should see failures early (e.g. on startup or first page load), and in what contexts.
Hence, the flag.

classmethod needs(*service_names)
A class decorator to indicate that an XBlock class needs particular services.

classmethod open_local_resource(uri)
Open a local resource.

The container calls this method when it receives a request for a resource on a URL which was generated
by Runtime.local_resource_url(). It will pass the URI from the original call to local_resource_url() back
to this method. The XBlock must parse this URI and return an open file-like object for the resource.

For security reasons, the default implementation will return only a very restricted set of file types, which
must be located in a folder that defaults to “public”. The location used for public resources can be changed
on a per-XBlock basis. XBlock authors who want to override this behavior will need to take care to ensure
that the method only serves legitimate public resources. At the least, the URI should be matched against a
whitelist regex to ensure that you do not serve an unauthorized resource.

classmethod parse_xml(node, runtime, keys, id_generator)
Use node to construct a new block.

Parameters

• node (Element) – The xml node to parse into an xblock.

• runtime (Runtime) – The runtime to use while parsing.

• keys (ScopeIds) – The keys identifying where this block will store its data.

• id_generator (IdGenerator) – An object that will allow the runtime to generate
correct definition and usage ids for children of this block.

classmethod register_temp_plugin(class_, identifier=None, dist=u’xblock’)
Decorate a function to run with a temporary plugin available.

9

https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element

XBlock API Guide

Use it like this in tests:

@register_temp_plugin(MyXBlockClass):
def test_the_thing():

Here I can load MyXBlockClass by name.

render(view, context=None)
Render view with this block’s runtime and the supplied context

save()
Save all dirty fields attached to this XBlock.

classmethod service_declaration(service_name)
Find and return a service declaration.

XBlocks declare their service requirements with @XBlock.needs and @XBlock.wants decorators. These
store information on the class. This function finds those declarations for a block.

Parameters service_name (str) – the name of the service requested.

Returns One of “need”, “want”, or None.

classmethod supports(*functionalities)
A view decorator to indicate that an xBlock view has support for the given functionalities.

Parameters functionalities – String identifiers for the functionalities of the view. For
example: “multi_device”.

static tag(tags)
Returns a function that adds the words in tags as class tags to this class.

ugettext(text)
Translates message/text and returns it in a unicode string. Using runtime to get i18n service.

validate()
Ask this xblock to validate itself. Subclasses are expected to override this method, as there is currently
only a no-op implementation. Any overriding method should call super to collect validation results from
its superclasses, and then add any additional results as necessary.

classmethod wants(*service_names)
A class decorator to indicate that an XBlock class wants particular services.

xml_element_name()
What XML element name should be used for this block?

xml_text_content()
What is the text content for this block’s XML node?

10 Chapter 3. XBlock API

https://docs.python.org/3/library/stdtypes.html#str

CHAPTER 4

Fields API

Fields declare storage for XBlock data. They use abstract notions of scopes to associate each field with particular sets
of blocks and users. The hosting runtime application decides what actual storage mechanism to use for each scope.

class xblock.fields.BlockScope
Enumeration of block scopes.

The block scope specifies how a field relates to blocks. A BlockScope and a UserScope are combined to
make a Scope for a field.

USAGE: The data is related to a particular use of a block in a course.

DEFINITION: The data is related to the definition of the block. Although unusual, one block definition
can be used in more than one place in a course.

TYPE: The data is related to all instances of this type of XBlock.

ALL: The data is common to all blocks. This can be useful for storing information that is purely about the
student.

classmethod scopes()
Return a list of valid/understood class scopes.

class xblock.fields.UserScope
Enumeration of user scopes.

The user scope specifies how a field relates to users. A BlockScope and a UserScope are combined to
make a Scope for a field.

NONE: Identifies data agnostic to the user of the XBlock. The data is related to no particular user. All
users see the same data. For instance, the definition of a problem.

ONE: Identifies data particular to a single user of the XBlock. For instance, a student’s answer to a prob-
lem.

ALL: Identifies data aggregated while the block is used by many users. The data is related to all the users.
For instance, a count of how many students have answered a question, or a histogram of the answers
submitted by all students.

11

XBlock API Guide

classmethod scopes()
Return a list of valid/understood class scopes. Why do we need this? I believe it is not used anywhere.

class xblock.fields.Scope
Defines six types of scopes to be used: content, settings, user_state, preferences, user_info, and
user_state_summary.

The content scope is used to save data for all users, for one particular block, across all runs of a course. An
example might be an XBlock that wishes to tabulate user “upvotes”, or HTML content ti display literally on the
page (this example being the reason this scope is named content).

The settings scope is used to save data for all users, for one particular block, for one specific run of a course.
This is like the content scope, but scoped to one run of a course. An example might be a due date for a problem.

The user_state scope is used to save data for one user, for one block, for one run of a course. An example might
be how many points a user scored on one specific problem.

The preferences scope is used to save data for one user, for all instances of one specific TYPE of block, across
the entire platform. An example might be that a user can set their preferred default speed for the video player.
This default would apply to all instances of the video player, across the whole platform, but only for that student.

The user_info scope is used to save data for one user, across the entire platform. An example might be a user’s
time zone or language preference.

The user_state_summary scope is used to save data aggregated across many users of a single block. For example,
a block might store a histogram of the points scored by all users attempting a problem.

Create a new Scope, with an optional name.

classmethod named_scopes()
Return all named Scopes.

classmethod scopes()
Return all possible Scopes.

class xblock.fields.ScopeIds
A simple wrapper to collect all of the ids needed to correctly identify an XBlock (or other classes deriving from
ScopedStorageMixin) to a FieldData. These identifiers match up with BlockScope and UserScope attributes, so
that, for instance, the def_id identifies scopes that use BlockScope.DEFINITION.

Create new instance of ScopeIds(user_id, block_type, def_id, usage_id)

class xblock.fields.Field(help=None, default=fields.UNSET, scope=ScopeBase(user=UserScope.NONE,
block=BlockScope.DEFINITION, name=u’content’), dis-
play_name=None, values=None, enforce_type=False, xml_node=False,
force_export=False, **kwargs)

A field class that can be used as a class attribute to define what data the class will want to refer to.

When the class is instantiated, it will be available as an instance attribute of the same name, by proxying through
to the field-data service on the containing object.

Parameters

• help (str) – documentation for the field, suitable for presenting to a user (defaults to
None).

• default – field’s default value. Can be a static value or the special
xblock.fields.UNIQUE_ID reference. When set to xblock.fields.UNIQUE_ID, the field de-
faults to a unique string that is deterministically calculated for the field in the given scope
(defaults to None).

• scope – this field’s scope (defaults to Scope.content).

12 Chapter 4. Fields API

https://docs.python.org/3/library/stdtypes.html#str

XBlock API Guide

• display_name – the display name for the field, suitable for presenting to a user (defaults
to name of the field).

• values – a specification of the valid values for this field. This can be specified as either
a static specification, or a function that returns the specification. For example specification
formats, see the values property definition.

• enforce_type – whether the type of the field value should be enforced on set, using
self.enforce_type, raising an exception if it’s not possible to convert it. This provides a
guarantee on the stored value type.

• xml_node – if set, the field will be serialized as a separate node instead of an xml attribute
(default: False).

• force_export – if set, the field value will be exported to XML even if normal export
conditions are not met (i.e. the field has no explicit value set)

• kwargs – optional runtime-specific options/metadata. Will be stored as runtime_options.

default
Returns the static value that this defaults to.

delete_from(xblock)
Delete the value for this field from the supplied xblock

display_name
Returns the display name for this class, suitable for use in a GUI.

If no display name has been set, returns the name of the class.

enforce_type(value)
Coerce the type of the value, if necessary

Called on field sets to ensure that the stored type is consistent if the field was initialized with en-
force_type=True

This must not have side effects, since it will be executed to trigger a DeprecationWarning even if en-
force_type is disabled

from_json(value)
Return value as a native full featured python type (the inverse of to_json)

Called during field reads to convert the stored value into a full featured python object

from_string(serialized)
Returns a native value from a YAML serialized string representation. Since YAML is a superset of JSON,
this is the inverse of to_string.)

is_set_on(xblock)
Return whether this field has a non-default value on the supplied xblock

name
Returns the name of this field.

read_from(xblock)
Retrieve the value for this field from the specified xblock

read_json(xblock)
Retrieve the serialized value for this field from the specified xblock

to_json(value)
Return value in the form of nested lists and dictionaries (suitable for passing to json.dumps).

This is called during field writes to convert the native python type to the value stored in the database

13

XBlock API Guide

to_string(value)
Return a JSON serialized string representation of the value.

values
Returns the valid values for this class. This is useful for representing possible values in a UI.

Example formats:

• A finite set of elements:

[1, 2, 3]

• A finite set of elements where the display names differ from the values:

[
{"display_name": "Always", "value": "always"},
{"display_name": "Past Due", "value": "past_due"},
]

• A range for floating point numbers with specific increments:

{"min": 0 , "max": 10, "step": .1}

If this field class does not define a set of valid values, this property will return None.

write_to(xblock, value)
Set the value for this field to value on the supplied xblock

class xblock.fields.Boolean(help=None, default=fields.UNSET,
scope=ScopeBase(user=UserScope.NONE,
block=BlockScope.DEFINITION, name=u’content’), dis-
play_name=None, **kwargs)

A field class for representing a boolean.

The value, as loaded or enforced, can be either a Python bool, a string, or any value that will then be converted
to a bool in the from_json method.

Examples:

True -> True
'true' -> True
'TRUE' -> True
'any other string' -> False
[] -> False
['123'] -> True
None - > False

class xblock.fields.Dict(help=None, default=fields.UNSET, scope=ScopeBase(user=UserScope.NONE,
block=BlockScope.DEFINITION, name=u’content’), dis-
play_name=None, values=None, enforce_type=False, xml_node=False,
force_export=False, **kwargs)

A field class for representing a Python dict.

The value, as loaded or enforced, must be either be None or a dict.

to_string(value)
In python3, json.dumps() cannot sort keys of different types, so preconvert None to ‘null’.

14 Chapter 4. Fields API

XBlock API Guide

class xblock.fields.Float(help=None, default=fields.UNSET, scope=ScopeBase(user=UserScope.NONE,
block=BlockScope.DEFINITION, name=u’content’), dis-
play_name=None, values=None, enforce_type=False, xml_node=False,
force_export=False, **kwargs)

A field that contains a float.

The value, as loaded or enforced, can be None, ‘’ (which will be treated as None), a Python float, or a value that
will parse as an float, ie., something for which float(value) does not throw an error.

class xblock.fields.Integer(help=None, default=fields.UNSET,
scope=ScopeBase(user=UserScope.NONE,
block=BlockScope.DEFINITION, name=u’content’), dis-
play_name=None, values=None, enforce_type=False,
xml_node=False, force_export=False, **kwargs)

A field that contains an integer.

The value, as loaded or enforced, can be None, ‘’ (which will be treated as None), a Python integer, or a value
that will parse as an integer, ie., something for which int(value) does not throw an error.

Note that a floating point value will convert to an integer, but a string containing a floating point number (‘3.48’)
will throw an error.

class xblock.fields.List(help=None, default=fields.UNSET, scope=ScopeBase(user=UserScope.NONE,
block=BlockScope.DEFINITION, name=u’content’), dis-
play_name=None, values=None, enforce_type=False, xml_node=False,
force_export=False, **kwargs)

A field class for representing a list.

The value, as loaded or enforced, can either be None or a list.

class xblock.fields.Set(*args, **kwargs)
A field class for representing a set.

The stored value can either be None or a set.

Set class constructor.

Redefined in order to convert default values to sets.

class xblock.fields.String(help=None, default=fields.UNSET, scope=ScopeBase(user=UserScope.NONE,
block=BlockScope.DEFINITION, name=u’content’), dis-
play_name=None, values=None, enforce_type=False,
xml_node=False, force_export=False, **kwargs)

A field class for representing a string.

The value, as loaded or enforced, can either be None or a basestring instance.

from_string(value)
String gets serialized and deserialized without quote marks.

none_to_xml
Returns True to use a XML node for the field and represent None as an attribute.

to_string(value)
String gets serialized and deserialized without quote marks.

class xblock.fields.XMLString(help=None, default=fields.UNSET,
scope=ScopeBase(user=UserScope.NONE,
block=BlockScope.DEFINITION, name=u’content’), dis-
play_name=None, values=None, enforce_type=False,
xml_node=False, force_export=False, **kwargs)

A field class for representing an XML string.

15

XBlock API Guide

The value, as loaded or enforced, can either be None or a basestring instance. If it is a basestring instance, it
must be valid XML. If it is not valid XML, an lxml.etree.XMLSyntaxError will be raised.

to_json(value)
Serialize the data, ensuring that it is valid XML (or None).

Raises an lxml.etree.XMLSyntaxError if it is a basestring but not valid XML.

class xblock.fields.XBlockMixin(*args, **kwargs)
A wrapper around xblock.core.XBlockMixin that provides backwards compatibility for the old location.

Deprecated.

class xblock.reference.plugins.Filesystem(help=None, default=fields.UNSET,
scope=ScopeBase(user=UserScope.NONE,
block=BlockScope.DEFINITION,
name=u’content’), display_name=None,
values=None, enforce_type=False,
xml_node=False, force_export=False,
**kwargs)

An enhanced pyfilesystem.

This returns a file system provided by the runtime. The file system has two additional methods over a normal
pyfilesytem:

• get_url allows it to return a URL for a file

• expire allows it to create files which may be garbage collected after a preset period. edx-platform and
xblock-sdk do not currently garbage collect them, however.

More information can be found at: http://docs.pyfilesystem.org/en/latest/ and https://github.com/pmitros/
django-pyfs

The major use cases for this are storage of large binary objects, pregenerating per-student data (e.g. pylab
plots), and storing data which should be downloadable (for example, serving will typically be
faster through this than serving that up through XBlocks views.

16 Chapter 4. Fields API

http://docs.pyfilesystem.org/en/latest/
https://github.com/pmitros/django-pyfs
https://github.com/pmitros/django-pyfs

CHAPTER 5

Runtime API

Machinery to make the common case easy when building new runtimes

xblock.runtime.DbModel
alias of xblock.runtime.KvsFieldData

class xblock.runtime.DictKeyValueStore(storage=None)
A KeyValueStore that stores everything into a Python dictionary.

class xblock.runtime.IdGenerator
An abstract object that creates usage and definition ids

create_aside(definition_id, usage_id, aside_type)
Make a new aside definition and usage ids, indicating an XBlockAside of type aside_type commenting
on an XBlock usage usage_id

Returns (aside_definition_id, aside_usage_id)

create_definition(block_type, slug=None)
Make a definition, storing its block type.

If slug is provided, it is a suggestion that the definition id incorporate the slug somehow.

Returns the newly-created definition id.

create_usage(def_id)
Make a usage, storing its definition id.

Returns the newly-created usage id.

class xblock.runtime.IdReader
An abstract object that stores usages and definitions.

get_aside_type_from_definition(aside_id)
Retrieve the XBlockAside aside_type associated with this aside definition id.

Parameters aside_id – The definition id of the XBlockAside.

Returns The aside_type of the aside.

17

XBlock API Guide

get_aside_type_from_usage(aside_id)
Retrieve the XBlockAside aside_type associated with this aside usage id.

Parameters aside_id – The usage id of the XBlockAside.

Returns The aside_type of the aside.

get_block_type(def_id)
Retrieve the block_type of a particular definition

Parameters def_id – The id of the definition to query

Returns The block_type of the definition

get_definition_id(usage_id)
Retrieve the definition that a usage is derived from.

Parameters usage_id – The id of the usage to query

Returns The definition_id the usage is derived from

get_definition_id_from_aside(aside_id)
Retrieve the XBlock definition_id associated with this aside definition id.

Parameters aside_id – The definition id of the XBlockAside.

Returns The definition_id of the xblock the aside is commenting on.

get_usage_id_from_aside(aside_id)
Retrieve the XBlock usage_id associated with this aside usage id.

Parameters aside_id – The usage id of the XBlockAside.

Returns The usage_id of the usage the aside is commenting on.

class xblock.runtime.KeyValueStore
The abstract interface for Key Value Stores.

class Key
Keys are structured to retain information about the scope of the data. Stores can use this information
however they like to store and retrieve data.

default(key)
Returns the context relevant default of the given key or raise KeyError which will result in the field’s global
default.

delete(key)
Deletes key from storage.

get(key)
Reads the value of the given key from storage.

has(key)
Returns whether or not key is present in storage.

set(key, value)
Sets key equal to value in storage.

set_many(update_dict)
For each (key, value) in update_dict, set key to value in storage.

The default implementation brute force updates field by field through set which may be inefficient for
any runtimes doing persistence operations on each set. Such implementations will want to override this
method.

Update_dict field_name, field_value pairs for all cached changes

18 Chapter 5. Runtime API

XBlock API Guide

class xblock.runtime.KvsFieldData(kvs, **kwargs)
An interface mapping value access that uses field names to one that uses the correct scoped keys for the under-
lying KeyValueStore

default(block, name)
Ask the kvs for the default (default implementation which other classes may override).

Parameters

• block (XBlock) – block containing field to default

• name – name of the field to default

delete(block, name)
Reset the value of the field named name to the default

get(block, name)
Retrieve the value for the field named name.

If a value is provided for default, then it will be returned if no value is set

has(block, name)
Return whether or not the field named name has a non-default value

set(block, name, value)
Set the value of the field named name

set_many(block, update_dict)
Update the underlying model with the correct values.

class xblock.runtime.MemoryIdManager
A simple dict-based implementation of IdReader and IdGenerator.

ASIDE_DEFINITION_ID
alias of MemoryAsideDefinitionId

ASIDE_USAGE_ID
alias of MemoryAsideUsageId

clear()
Remove all entries.

create_aside(definition_id, usage_id, aside_type)
Create the aside.

create_definition(block_type, slug=None)
Make a definition, storing its block type.

create_usage(def_id)
Make a usage, storing its definition id.

get_aside_type_from_definition(aside_id)
Get an aside’s type from its definition id.

get_aside_type_from_usage(aside_id)
Get an aside’s type from its usage id.

get_block_type(def_id)
Get a block_type by its definition id.

get_definition_id(usage_id)
Get a definition_id by its usage id.

get_definition_id_from_aside(aside_id)
Extract the original xblock’s definition_id from an aside’s definition_id.

19

XBlock API Guide

get_usage_id_from_aside(aside_id)
Extract the usage_id from the aside’s usage_id.

class xblock.runtime.Mixologist(mixins)
Provides a facility to dynamically generate classes with additional mixins.

Parameters mixins (iterable of class) – Classes to mixin

mix(cls)
Returns a subclass of cls mixed with self.mixins.

Parameters cls (class) – The base class to mix into

class xblock.runtime.NullI18nService
A simple implementation of the runtime “i18n” service.

strftime(dtime, format)
Locale-aware strftime, with format short-cuts.

ugettext
Dispatch to the appropriate gettext method to handle text objects.

Note that under python 3, this uses gettext(), while under python 2, it uses ugettext(). This should not be
used with bytestrings.

ungettext
Dispatch to the appropriate ngettext method to handle text objects.

Note that under python 3, this uses ngettext(), while under python 2, it uses ungettext(). This should not be
used with bytestrings.

class xblock.runtime.ObjectAggregator(*objects)
Provides a single object interface that combines many smaller objects.

Attribute access on the aggregate object acts on the first sub-object that has that attribute.

class xblock.runtime.RegexLexer(*toks)
Split text into lexical tokens based on regexes.

lex(text)
Iterator that tokenizes text and yields up tokens as they are found

class xblock.runtime.Runtime(id_reader, field_data=None, mixins=(), services=None, de-
fault_class=None, select=None, id_generator=None)

Access to the runtime environment for XBlocks.

Parameters

• id_reader (IdReader) – An object that allows the Runtime to map between usage_ids,
definition_ids, and block_types.

• id_generator (IdGenerator) – The IdGenerator to use for creating ids when
importing XML or loading XBlockAsides.

• field_data (FieldData) – The FieldData to use by default when constructing an
XBlock from this Runtime.

• mixins (tuple) – Classes that should be mixed in with every XBlock created by this
Runtime.

• services (dict) – Services to make available through the service()method. There’s
no point passing anything here if you are overriding service() in your sub-class.

• default_class (class) – The default class to use if a class can’t be found for a partic-
ular block_type when loading an XBlock.

20 Chapter 5. Runtime API

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

XBlock API Guide

• select – A function to select from one or more XBlock subtypes found when calling
XBlock.load_class() to resolve a block_type. This is the same select as used by
Plugin.load_class().

add_block_as_child_node(block, node)
Export block as a child node of node.

add_node_as_child(block, node, id_generator=None)
Called by XBlock.parse_xml to treat a child node as a child block.

applicable_aside_types(block)
Return the set of applicable aside types for this runtime and block. This method allows the runtime to filter
the set of asides it wants to support or to provide even block-level or block_type level filtering. We may
extend this in the future to also take the user or user roles.

construct_xblock(block_type, scope_ids, field_data=None, *args, **kwargs)
Construct a new xblock of the type identified by block_type, passing *args and **kwargs into __init__.

construct_xblock_from_class(cls, scope_ids, field_data=None, *args, **kwargs)
Construct a new xblock of type cls, mixing in the mixins defined for this application.

create_aside(block_type, keys)
The aside version of construct_xblock: take a type and key. Return an instance

export_to_xml(block, xmlfile)
Export the block to XML, writing the XML to xmlfile.

field_data
Access the FieldData passed in the constructor.

Deprecated in favor of a ‘field-data’ service.

get_aside(aside_usage_id)
Create an XBlockAside in this runtime.

The aside_usage_id is used to find the Aside class and data.

get_aside_of_type(block, aside_type)
Return the aside of the given aside_type which might be decorating this block.

Parameters

• block (XBlock) – The block to retrieve asides for.

• aside_type (str) – the type of the aside

get_asides(block)
Return instances for all of the asides that will decorate this block.

Parameters block (XBlock) – The block to render retrieve asides for.

Returns List of XBlockAside instances

get_block(usage_id, for_parent=None)
Create an XBlock instance in this runtime.

The usage_id is used to find the XBlock class and data.

handle(block, handler_name, request, suffix=u”)
Handles any calls to the specified handler_name.

Provides a fallback handler if the specified handler isn’t found.

Parameters

• handler_name – The name of the handler to call

21

XBlock API Guide

• request (webob.Request) – The request to handle

• suffix – The remainder of the url, after the handler url prefix, if available

handler_url(block, handler_name, suffix=u”, query=u”, thirdparty=False)
Get the actual URL to invoke a handler.

handler_name is the name of your handler function. Any additional portion of the url will be passed as the
suffix argument to the handler.

The return value is a complete absolute URL that will route through the runtime to your handler.

Parameters

• block – The block to generate the url for

• handler_name – The handler on that block that the url should resolve to

• suffix – Any path suffix that should be added to the handler url

• query – Any query string that should be added to the handler url (which should not
include an initial ? or &)

• thirdparty – If true, create a URL that can be used without the user being logged in.
This is useful for URLs to be used by third-party services.

layout_asides(block, context, frag, view_name, aside_frag_fns)
Execute and layout the aside_frags wrt the block’s frag. Runtimes should feel free to override this method
to control execution, place, and style the asides appropriately for their application

This default method appends the aside_frags after frag. If you override this, you must call wrap_aside
around each aside as per this function.

Parameters

• block (XBlock) – the block being rendered

• frag (html) – The result from rendering the block

• list (aside_frag_fns) – The asides and closures for rendering to call

load_aside_type(aside_type)
Returns a subclass of XBlockAside that corresponds to the specified aside_type.

load_block_type(block_type)
Returns a subclass of XBlock that corresponds to the specified block_type.

local_resource_url(block, uri)
Get the URL to load a static resource from an XBlock.

block is the XBlock that owns the resource.

uri is a relative URI to the resource. The XBlock class’s get_local_resource(uri) method should be
able to open the resource identified by this uri.

Typically, this function uses open_local_resource defined on the XBlock class, which by default will
only allow resources from the “public/” directory of the kit. Resources must be placed in “public/” to be
successfully served with this URL.

The return value is a complete absolute URL which will locate the resource on your runtime.

parse_xml_file(fileobj, id_generator=None)
Parse an open XML file, returning a usage id.

parse_xml_string(xml, id_generator=None)
Parse a string of XML, returning a usage id.

22 Chapter 5. Runtime API

XBlock API Guide

publish(block, event_type, event_data)
Publish an event.

For example, to participate in the course grade, an XBlock should set has_score to True, and should publish
a grade event whenever the grade changes.

In this case the event_type would be grade, and the event_data would be a dictionary of the following
form:

{
'value': <number>,
'max_value': <number>,

}

The grade event represents a grade of value/max_value for the current user.

block is the XBlock from which the event originates.

query(block)
Query for data in the tree, starting from block.

Returns a Query object with methods for navigating the tree and retrieving information.

querypath(block, path)
An XPath-like interface to query.

render(block, view_name, context=None)
Render a block by invoking its view.

Finds the view named view_name on block. The default view will be used if a specific view hasn’t be
registered. If there is no default view, an exception will be raised.

The view is invoked, passing it context. The value returned by the view is returned, with possible modifi-
cations by the runtime to integrate it into a larger whole.

render_asides(block, view_name, frag, context)
Collect all of the asides’ add ons and format them into the frag. The frag already has the given block’s
rendering.

render_child(child, view_name=None, context=None)
A shortcut to render a child block.

Use this method to render your children from your own view function.

If view_name is not provided, it will default to the view name you’re being rendered with.

Returns the same value as render().

render_children(block, view_name=None, context=None)
Render a block’s children, returning a list of results.

Each child of block will be rendered, just as render_child() does.

Returns a list of values, each as provided by render().

resource_url(resource)
Get the URL for a static resource file.

resource is the application local path to the resource.

The return value is a complete absolute URL that will locate the resource on your runtime.

service(block, service_name)
Return a service, or None.

23

XBlock API Guide

Services are objects implementing arbitrary other interfaces. They are requested by agreed-upon names,
see [XXX TODO] for a list of possible services. The object returned depends on the service requested.

XBlocks must announce their intention to request services with the XBlock.needs or XBlock.wants decora-
tors. Use needs if you assume that the service is available, or wants if your code is flexible and can accept
a None from this method.

Runtimes can override this method if they have different techniques for finding and delivering services.

Parameters

• block (XBlock) – this block’s class will be examined for service decorators.

• service_name (str) – the name of the service requested.

Returns An object implementing the requested service, or None.

wrap_aside(block, aside, view, frag, context)
Creates a div which identifies the aside, points to the original block, and writes out the json_init_args into
a script tag.

The default implementation creates a frag to wraps frag w/ a div identifying the xblock. If you have
javascript, you’ll need to override this impl

wrap_xblock(block, view, frag, context)
Creates a div which identifies the xblock and writes out the json_init_args into a script tag.

If there’s a wrap_child method, it calls that with a deprecation warning.

The default implementation creates a frag to wraps frag w/ a div identifying the xblock. If you have
javascript, you’ll need to override this impl

24 Chapter 5. Runtime API

https://docs.python.org/3/library/stdtypes.html#str

CHAPTER 6

Fragment API

Makes the Fragment class available through the old namespace location.

class xblock.fragment.Fragment(*args, **kwargs)
A wrapper around web_fragments.fragment.Fragment that provides backwards compatibility for the old loca-
tion.

Deprecated.

add_frag_resources(fragment)
Add all the resources from a single fragment to my resources.

This is used to aggregate resources from another fragment that should be considered part of the current
fragment.

The content from the Fragment is ignored. The caller must collect together the content into this Fragment’s
content.

add_frags_resources(fragments)
Add all the resources from fragments to my resources.

This is used to aggregate resources from a sequence of fragments that should be considered part of the
current fragment.

The content from the Fragments is ignored. The caller must collect together the content into this Frag-
ment’s content.

25

XBlock API Guide

26 Chapter 6. Fragment API

CHAPTER 7

Exceptions API

Module for all xblock exception classes

exception xblock.exceptions.DisallowedFileError
Raised by open_local_resource() if the requested file is not allowed.

exception xblock.exceptions.FieldDataDeprecationWarning
Warning for use of deprecated _field_data accessor

exception xblock.exceptions.InvalidScopeError(invalid_scope, valid_scopes=None)
Raised to indicated that operating on the supplied scope isn’t allowed by a KeyValueStore

exception xblock.exceptions.JsonHandlerError(status_code, message)
Raised by a function decorated with XBlock.json_handler to indicate that an error response should be returned.

get_response(**kwargs)
Returns a Response object containing this object’s status code and a JSON object containing the key
“error” with the value of this object’s error message in the body. Keyword args are passed through to the
Response.

exception xblock.exceptions.KeyValueMultiSaveError(saved_field_names)
Raised to indicated an error in saving multiple fields in a KeyValueStore

Create a new KeyValueMultiSaveError

saved_field_names - an iterable of field names (strings) that were successfully saved before the exception oc-
curred

exception xblock.exceptions.NoSuchDefinition
Raised by IdReader.get_block_type() if the definition doesn’t exist.

exception xblock.exceptions.NoSuchHandlerError
Raised to indicate that the requested handler was not found.

exception xblock.exceptions.NoSuchServiceError
Raised to indicate that a requested service was not found.

exception xblock.exceptions.NoSuchUsage
Raised by IdReader.get_definition_id() if the usage doesn’t exist.

27

XBlock API Guide

exception xblock.exceptions.NoSuchViewError(block, view_name)
Raised to indicate that the view requested was not found.

Create a new NoSuchViewError

Parameters

• block – The XBlock without a view

• view_name – The name of the view that couldn’t be found

exception xblock.exceptions.XBlockNotFoundError(usage_id)
Raised to indicate that an XBlock could not be found with the requested usage_id

exception xblock.exceptions.XBlockSaveError(saved_fields, dirty_fields, message=None)
Raised to indicate an error in saving an XBlock

Create a new XBlockSaveError

saved_fields - a set of fields that were successfully saved before the error occurred dirty_fields - a set of fields
that were left dirty after the save

28 Chapter 7. Exceptions API

Python Module Index

x
xblock.exceptions, 27
xblock.fields, 11
xblock.fragment, 25
xblock.runtime, 17

29

XBlock API Guide

30 Python Module Index

Index

A
add_block_as_child_node() (xblock.runtime.Runtime

method), 21
add_children_to_node() (xblock.core.XBlock method), 7
add_frag_resources() (xblock.fragment.Fragment

method), 25
add_frags_resources() (xblock.fragment.Fragment

method), 25
add_node_as_child() (xblock.runtime.Runtime method),

21
add_xml_to_node() (xblock.core.XBlock method), 7
applicable_aside_types() (xblock.runtime.Runtime

method), 21
ASIDE_DEFINITION_ID

(xblock.runtime.MemoryIdManager attribute),
19

ASIDE_USAGE_ID (xblock.runtime.MemoryIdManager
attribute), 19

B
BlockScope (class in xblock.fields), 11
Boolean (class in xblock.fields), 14

C
clear() (xblock.runtime.MemoryIdManager method), 19
clear_child_cache() (xblock.core.XBlock method), 7
construct_xblock() (xblock.runtime.Runtime method), 21
construct_xblock_from_class() (xblock.runtime.Runtime

method), 21
create_aside() (xblock.runtime.IdGenerator method), 17
create_aside() (xblock.runtime.MemoryIdManager

method), 19
create_aside() (xblock.runtime.Runtime method), 21
create_definition() (xblock.runtime.IdGenerator method),

17
create_definition() (xblock.runtime.MemoryIdManager

method), 19
create_usage() (xblock.runtime.IdGenerator method), 17

create_usage() (xblock.runtime.MemoryIdManager
method), 19

D
DbModel (in module xblock.runtime), 17
default (xblock.fields.Field attribute), 13
default() (xblock.runtime.KeyValueStore method), 18
default() (xblock.runtime.KvsFieldData method), 19
delete() (xblock.runtime.KeyValueStore method), 18
delete() (xblock.runtime.KvsFieldData method), 19
delete_from() (xblock.fields.Field method), 13
Dict (class in xblock.fields), 14
DictKeyValueStore (class in xblock.runtime), 17
DisallowedFileError, 27
display_name (xblock.fields.Field attribute), 13

E
enforce_type() (xblock.fields.Field method), 13
export_to_xml() (xblock.runtime.Runtime method), 21

F
Field (class in xblock.fields), 12
field_data (xblock.runtime.Runtime attribute), 21
FieldDataDeprecationWarning, 27
Filesystem (class in xblock.reference.plugins), 16
Float (class in xblock.fields), 14
force_save_fields() (xblock.core.XBlock method), 7
Fragment (class in xblock.fragment), 25
from_json() (xblock.fields.Field method), 13
from_string() (xblock.fields.Field method), 13
from_string() (xblock.fields.String method), 15

G
get() (xblock.runtime.KeyValueStore method), 18
get() (xblock.runtime.KvsFieldData method), 19
get_aside() (xblock.runtime.Runtime method), 21
get_aside_of_type() (xblock.runtime.Runtime method),

21

31

XBlock API Guide

get_aside_type_from_definition()
(xblock.runtime.IdReader method), 17

get_aside_type_from_definition()
(xblock.runtime.MemoryIdManager method),
19

get_aside_type_from_usage() (xblock.runtime.IdReader
method), 17

get_aside_type_from_usage()
(xblock.runtime.MemoryIdManager method),
19

get_asides() (xblock.runtime.Runtime method), 21
get_block() (xblock.runtime.Runtime method), 21
get_block_type() (xblock.runtime.IdReader method), 18
get_block_type() (xblock.runtime.MemoryIdManager

method), 19
get_child() (xblock.core.XBlock method), 7
get_children() (xblock.core.XBlock method), 7
get_definition_id() (xblock.runtime.IdReader method),

18
get_definition_id() (xblock.runtime.MemoryIdManager

method), 19
get_definition_id_from_aside()

(xblock.runtime.IdReader method), 18
get_definition_id_from_aside()

(xblock.runtime.MemoryIdManager method),
19

get_parent() (xblock.core.XBlock method), 7
get_public_dir() (xblock.core.XBlock class method), 8
get_resources_dir() (xblock.core.XBlock class method), 8
get_response() (xblock.exceptions.JsonHandlerError

method), 27
get_usage_id_from_aside() (xblock.runtime.IdReader

method), 18
get_usage_id_from_aside()

(xblock.runtime.MemoryIdManager method),
19

H
handle() (xblock.core.XBlock method), 8
handle() (xblock.runtime.Runtime method), 21
handler() (xblock.core.XBlock class method), 8
handler_url() (xblock.runtime.Runtime method), 22
has() (xblock.runtime.KeyValueStore method), 18
has() (xblock.runtime.KvsFieldData method), 19
has_cached_parent (xblock.core.XBlock attribute), 8
has_support() (xblock.core.XBlock method), 8

I
IdGenerator (class in xblock.runtime), 17
IdReader (class in xblock.runtime), 17
index_dictionary() (xblock.core.XBlock method), 8
Integer (class in xblock.fields), 15
InvalidScopeError, 27
is_set_on() (xblock.fields.Field method), 13

J
json_handler() (xblock.core.XBlock class method), 8
JsonHandlerError, 27

K
KeyValueMultiSaveError, 27
KeyValueStore (class in xblock.runtime), 18
KeyValueStore.Key (class in xblock.runtime), 18
KvsFieldData (class in xblock.runtime), 18

L
layout_asides() (xblock.runtime.Runtime method), 22
lex() (xblock.runtime.RegexLexer method), 20
List (class in xblock.fields), 15
load_aside_type() (xblock.runtime.Runtime method), 22
load_block_type() (xblock.runtime.Runtime method), 22
load_class() (xblock.core.XBlock class method), 8
load_classes() (xblock.core.XBlock class method), 9
load_tagged_classes() (xblock.core.XBlock class

method), 9
local_resource_url() (xblock.runtime.Runtime method),

22

M
MemoryIdManager (class in xblock.runtime), 19
mix() (xblock.runtime.Mixologist method), 20
Mixologist (class in xblock.runtime), 20

N
name (xblock.fields.Field attribute), 13
named_scopes() (xblock.fields.Scope class method), 12
needs() (xblock.core.XBlock class method), 9
none_to_xml (xblock.fields.String attribute), 15
NoSuchDefinition, 27
NoSuchHandlerError, 27
NoSuchServiceError, 27
NoSuchUsage, 27
NoSuchViewError, 27
NullI18nService (class in xblock.runtime), 20

O
ObjectAggregator (class in xblock.runtime), 20
open_local_resource() (xblock.core.XBlock class

method), 9

P
parse_xml() (xblock.core.XBlock class method), 9
parse_xml_file() (xblock.runtime.Runtime method), 22
parse_xml_string() (xblock.runtime.Runtime method), 22
publish() (xblock.runtime.Runtime method), 22

Q
query() (xblock.runtime.Runtime method), 23

32 Index

XBlock API Guide

querypath() (xblock.runtime.Runtime method), 23

R
read_from() (xblock.fields.Field method), 13
read_json() (xblock.fields.Field method), 13
RegexLexer (class in xblock.runtime), 20
register_temp_plugin() (xblock.core.XBlock class

method), 9
render() (xblock.core.XBlock method), 10
render() (xblock.runtime.Runtime method), 23
render_asides() (xblock.runtime.Runtime method), 23
render_child() (xblock.runtime.Runtime method), 23
render_children() (xblock.runtime.Runtime method), 23
resource_url() (xblock.runtime.Runtime method), 23
Runtime (class in xblock.runtime), 20

S
save() (xblock.core.XBlock method), 10
Scope (class in xblock.fields), 12
ScopeIds (class in xblock.fields), 12
scopes() (xblock.fields.BlockScope class method), 11
scopes() (xblock.fields.Scope class method), 12
scopes() (xblock.fields.UserScope class method), 11
service() (xblock.runtime.Runtime method), 23
service_declaration() (xblock.core.XBlock class method),

10
Set (class in xblock.fields), 15
set() (xblock.runtime.KeyValueStore method), 18
set() (xblock.runtime.KvsFieldData method), 19
set_many() (xblock.runtime.KeyValueStore method), 18
set_many() (xblock.runtime.KvsFieldData method), 19
strftime() (xblock.runtime.NullI18nService method), 20
String (class in xblock.fields), 15
supports() (xblock.core.XBlock class method), 10

T
tag() (xblock.core.XBlock static method), 10
to_json() (xblock.fields.Field method), 13
to_json() (xblock.fields.XMLString method), 16
to_string() (xblock.fields.Dict method), 14
to_string() (xblock.fields.Field method), 13
to_string() (xblock.fields.String method), 15

U
ugettext (xblock.runtime.NullI18nService attribute), 20
ugettext() (xblock.core.XBlock method), 10
ungettext (xblock.runtime.NullI18nService attribute), 20
UserScope (class in xblock.fields), 11

V
validate() (xblock.core.XBlock method), 10
values (xblock.fields.Field attribute), 14

W
wants() (xblock.core.XBlock class method), 10
wrap_aside() (xblock.runtime.Runtime method), 24
wrap_xblock() (xblock.runtime.Runtime method), 24
write_to() (xblock.fields.Field method), 14

X
XBlock (class in xblock.core), 7
xblock.exceptions (module), 27
xblock.fields (module), 11
xblock.fragment (module), 25
xblock.runtime (module), 17
XBlockMixin (class in xblock.fields), 16
XBlockNotFoundError, 28
XBlockSaveError, 28
xml_element_name() (xblock.core.XBlock method), 10
xml_text_content() (xblock.core.XBlock method), 10
XMLString (class in xblock.fields), 15

Index 33

	Change history for XBlock
	1.2.1 - 2018-06-25
	1.2.0 - Aside filtering
	1.0 - Python 3
	0.5 - ???
	0.4
	0.3 - 2014-01-09

	Introduction to XBlocks
	XBlock Independence and Interoperability
	XBlocks Compared to Web Applications

	XBlock API
	Fields API
	Runtime API
	Fragment API
	Exceptions API
	Python Module Index

